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RunInference
class MyComplicatedPridctionStuff(beam.DoFn): 

def setup():

  #Code for loading once 

... 

def process(self, element):

#Use model handle to call

...

#Handle errors, do nice error logging

...

#Output useful metrics from the process

...

TODO Oh wait! I need to batch stuff first ... 
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RunInference

with beam.Pipeline(options=pipeline_options) as p:

   (p

   | beam.io.fileio.MatchFiles( gs://my_bucket/images*)

   | beam.io.fileio.ReadMatches()

   | beam.ml.inference.RunInference(model_handler

.with_preprocess_fn(lambda x: preprocess(x))

.with_postprocess_fn(lambda x: post_process(x)))

   ...
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ModelHandlers

with beam.Pipeline(options=pipeline_options) as p:

   (p

   | beam.io.fileio.MatchFiles( gs://my_bucket/images*)

   | beam.io.fileio.ReadMatches()

   | beam.ml.inference.RunInference(model_handler

.with_preprocess_fn(lambda x: preprocess(x))

.with_postprocess_fn(lambda x: post_process(x)))

   ...
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ModelHandlers

PytorchModelHandlerTensor

Framework Type
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ModelHandlers
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ModelHandlers

pipeline_handler = HuggingFacePipelineModelHandler(

task="automatic-speech-recognition",

model="openai/whisper-small",

min_batch_size=2,

load_pipeline_args={'chunk_length_s':30, 'device':'cuda:0'},

large_model=True)
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Learn More

Code:
https://github.com/apache/beam/tree/master/sdks/python/apache_beam/ml

RunInference and ModelHandler base classes are in base.py

Notebooks and examples:
https://github.com/apache/beam/tree/master/sdks/python/apache_beam/examples/inference

https://github.com/apache/beam/tree/master/examples/notebooks/beam-ml

Notebooks can be imported into Google Colab!

https://github.com/apache/beam/tree/master/sdks/python/apache_beam/ml
https://github.com/apache/beam/tree/master/sdks/python/apache_beam/examples/inference
https://github.com/apache/beam/tree/master/examples/notebooks/beam-ml
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Next Session

Choosing Models and how to adapt a 
model to Beam
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RunInference

with beam.Pipeline(options=pipeline_options) as p:

   (p

   | beam.io.fileio.MatchFiles( gs://my_bucket/images*)

   | beam.io.fileio.ReadMatches()

   | beam.ml.inference.RunInference(model_handler

.with_preprocess_fn(lambda x: preprocess(x))

.with_postprocess_fn(lambda x: post_process(x)))

   ...
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Choosing a model

● Function

● Size

● Framework

● Support in Beam
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ModelHandlers
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Model Zoos
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Model Zoos

HuggingFace
HuggingFaceModelHandler
HuggingFacePipelineModelHandler

TensorflowHub
TFModelHandlerTensor(

model_uri=CLASSIFIER_URL)
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ModelHandlers: Text Example

1. Pick a Model
a. https://huggingface.co/stevhliu/my_awesome_eli5_mlm_model

2. Choose your model handler
a. HuggingFaceModelHandler

3. Add preprocessing and/or postprocessing
a. Encoding, decoding
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ModelHandlers: Text Example

Warning!  RunInference returns a PredictionResult:

class PredictionResult(NamedTuple('PredictionResult',
                                  [('example', _INPUT_TYPE),
                                   ('inference', _OUTPUT_TYPE),
                                   ('model_id', Optional[str])]))

What you usually want is in ‘result.inference’.



Beam College

ModelHandlers: Text Example

Let’s Go To Colab!
https://colab.sandbox.google.com/github/apache/beam/blob/master/exampl
es/notebooks/beam-ml/run_inference_huggingface.ipynb
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Next Session

High level overview of a complex ML 
pipeline
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6. Expanding the pipeline to real life use cases
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Beam College

Our Pipeline

Help center 
phone calls

Voice to 
Text model

Classifier 
(type of call)

Text to 
Voice 

LLM (fine 
tuned for 

type)
● What file format?

○ .wav
● Where are they stored?

○ GCS bucket
● How long are the audio clips?

○ 1-2 minutes
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Our Pipeline

Help center 
phone calls

Voice to 
Text model

Classifier 
(type of call)

Text to 
Voice 

LLM (fine 
tuned for 

type)
● Which model will we use?
● Where will we get the model?
● What framework?
● Which model handler?
● How we will preprocess the data?
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Our Pipeline

Help center 
phone calls

Voice to 
Text model

Classifier 
(type of call)

Text to 
Voice 

LLM (fine 
tuned for 

type)● Which model will we use?
○ openai/whisper-small

● Where will we get the model?
○ HuggingFace

● What framework?
○ pytorch

● Which model handler?
○ HuggingFacePipelineModelHandler

● How we will preprocess the data?
○ HuggingFace Pipelines will do it automatically
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Our Pipeline

Help center 
phone calls

Voice to 
Text model

Classifier 
(type of call)

Text to 
Voice 

LLM (fine 
tuned for 

type)
● Which model will we use?

○ XGBoost classifier
● Where will we get the model?

○ We will train it 
● What framework?

○ XGBoost
● Which model handler?

○ XGBoostModelHandlerPandas
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Our Pipeline

Help center 
phone calls

Voice to 
Text model

Classifier 
(type of call)

Text to 
Voice 

LLM (fine 
tuned for 

type)

● How do we match class to model?
○ Use a KeyedModelHandler
○ https://cloud.google.com/dataflow/docs/notebooks

/per_key_models

https://cloud.google.com/dataflow/docs/notebooks/per_key_models
https://cloud.google.com/dataflow/docs/notebooks/per_key_models
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phone calls
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● Which models will we use?
● Where will we get the model?
● What framework?
● Which model handler?
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Our Pipeline

Help center 
phone calls

Voice to 
Text model

Classifier 
(type of call)

Text to 
Voice 

LLM (fine 
tuned for 

type)

● Which models will we use?
○ Small LLMs: GPT2, Bert, etc

● Where will we get the model?
○ HuggingFace

● What framework?
○ PyTorch

● Which model handler?
○ HuggingFaceModelHandler
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Our Pipeline

Help center 
phone calls

Voice to 
Text model

Classifier 
(type of call)

Text to 
Voice 

LLM (fine 
tuned for 

type)

● Which model will we use?
● Where will we get the model?
● What framework?
● Which model handler?
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Our Pipeline

Help center 
phone calls

Voice to 
Text model

Classifier 
(type of call)

Text to 
Voice 

LLM (fine 
tuned for 

type)

● Which model will we use?
○ facebook/mms-tts-eng

● Where will we get the model?
○ HuggingFace

● What framework?
○ PyTorch

● Which model handler?
○ HuggingFaceModelHandler
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Our Pipeline, detail view

GCS

openai/whisper-small,
HFPipelinesMH

XGBoost,
XGBoostMHPa

nds

facebook/mms-tts-
eng

HFMH
Small LLMs

HFMH

HF = HuggingFace
MH= ModelHandler

.wav files

text

Type,
 text

text
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Links 
● Speech to Text: https://huggingface.co/openai/whisper-small
● XGBoost: https://xgboost.readthedocs.io/en/stable/

○ Beam notebook: 
https://github.com/apache/beam/blob/master/examples/notebooks/bea
m-ml/run_inference_xgboost.ipynb

● Text to Speech: https://huggingface.co/facebook/mms-tts-eng
● Beam KeyedModelHandler notebook: 

https://cloud.google.com/dataflow/docs/notebooks/per_key_models

https://huggingface.co/openai/whisper-small
https://xgboost.readthedocs.io/en/stable/
https://github.com/apache/beam/blob/master/examples/notebooks/beam-ml/run_inference_xgboost.ipynb
https://github.com/apache/beam/blob/master/examples/notebooks/beam-ml/run_inference_xgboost.ipynb
https://huggingface.co/facebook/mms-tts-eng
https://cloud.google.com/dataflow/docs/notebooks/per_key_models
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Next Session

Deep dive into our example pipeline, 
Part I



Thank you!

DataflowWorkerAcceleratorTypes

https://source.corp.google.com/piper///depot/google3/cloud/dataflow/common/dataflow_constants.h;bpv=1;bpt=1;rcl=573949955;l=949?gsn=DataflowWorkerAcceleratorTypes&gs=KYTHE%3A%2F%2Fkythe%3A%2F%2Fgoogle3%3Flang%3Dc%252B%252B%3Fpath%3Dcloud%2Fdataflow%2Fcommon%2Fdataflow_constants.h%23w_jgtEsep6L_ylVyoqJfxZNRCiOVZjX3ngGkM1xTqiU
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Implementing a complex ML pipeline:
Overview

1. Intro to ML in Beam: RunInference and 
Model Handlers

2. Choosing Models and how to adapt a model 
to Beam

3. High level view of the pipeline
4. Deep dive into our example pipeline, Part I
5. Deep dive into our example pipeline Part II
6. Expanding the pipeline to real life use cases
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To Colab!
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Next Session

Deep dive into our example pipeline, 
Part II



Thank you!

DataflowWorkerAcceleratorTypes

https://source.corp.google.com/piper///depot/google3/cloud/dataflow/common/dataflow_constants.h;bpv=1;bpt=1;rcl=573949955;l=949?gsn=DataflowWorkerAcceleratorTypes&gs=KYTHE%3A%2F%2Fkythe%3A%2F%2Fgoogle3%3Flang%3Dc%252B%252B%3Fpath%3Dcloud%2Fdataflow%2Fcommon%2Fdataflow_constants.h%23w_jgtEsep6L_ylVyoqJfxZNRCiOVZjX3ngGkM1xTqiU
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Implementing a complex ML pipeline:
Overview

1. Intro to ML in Beam: RunInference and 
Model Handlers

2. Choosing Models and how to adapt a model 
to Beam

3. High level view of the pipeline
4. Deep dive into our example pipeline, Part I
5. Deep dive into our example pipeline Part II
6. Expanding the pipeline to real life use cases
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Our Pipeline
We will cover the second half

Help center 
phone calls

Voice to 
Text model

Classifier 
(type of call)

Text to 
Voice 

LLM (fine 
tuned for 

type)
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To Colab!
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Next Session

Expanding the pipeline to real life use 
cases



Thank you!

DataflowWorkerAcceleratorTypes

https://source.corp.google.com/piper///depot/google3/cloud/dataflow/common/dataflow_constants.h;bpv=1;bpt=1;rcl=573949955;l=949?gsn=DataflowWorkerAcceleratorTypes&gs=KYTHE%3A%2F%2Fkythe%3A%2F%2Fgoogle3%3Flang%3Dc%252B%252B%3Fpath%3Dcloud%2Fdataflow%2Fcommon%2Fdataflow_constants.h%23w_jgtEsep6L_ylVyoqJfxZNRCiOVZjX3ngGkM1xTqiU
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Implementing a complex ML pipeline:
Overview

1. Intro to ML in Beam: RunInference and 
Model Handlers

2. Choosing Models and how to adapt a model 
to Beam

3. High level view of the pipeline
4. Deep dive into our example pipeline, Part I
5. Deep dive into our example pipeline Part II
6. Expanding the pipeline to real life use cases
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Our Pipeline

Help center 
phone calls

Voice to 
Text model

Classifier 
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LLM (fine 
tuned for 
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Same Pipeline, different business problem

Customer 
history

Cluster by 
purchase 
similarity

Match 
clusters to 

demographic 
data

Front page 
items for 
customer

recommender 
(fine tuned for 

cluster)
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Same Pipeline, different business problem

User posts
Translate to 

common 
language

Classify as 
type of post

Post/Filter/
Warn/Ban 
decision

Scan for 
abuse based 

on type
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Same Pipeline, different business problem

Prompt
Translate to 

common 
language

Classify as 
medium 

(music, text, 
etc)

Output files

Generative 
model for the 

medium
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And of course it can get crazier

Source: Apache Software Foundation



Thank you!

DataflowWorkerAcceleratorTypes

https://source.corp.google.com/piper///depot/google3/cloud/dataflow/common/dataflow_constants.h;bpv=1;bpt=1;rcl=573949955;l=949?gsn=DataflowWorkerAcceleratorTypes&gs=KYTHE%3A%2F%2Fkythe%3A%2F%2Fgoogle3%3Flang%3Dc%252B%252B%3Fpath%3Dcloud%2Fdataflow%2Fcommon%2Fdataflow_constants.h%23w_jgtEsep6L_ylVyoqJfxZNRCiOVZjX3ngGkM1xTqiU

