
Real-Time Streaming
With Kafka

Tom Stepp

Beam College 2025

Table of Contents

1. Kafka Intro

2. Beam Kafka IO

3. Managed IO

4. Redistribute Transform

5. Offset Deduplication

6. Active Load Balancing

7. Google Managed Kafka

8. Kafka Best Practices

Streaming Kafka Intro

Beam College 2025

Streaming Systems

Streaming systems are built for many reasons:

● Payment and financial transactions

● Logistics and automotive fleet tracking

● Sensor data from IoT systems

● Collect and react to customers in retail, travel, mobile apps

● Log extraction and fraud detection

● Gaming analytics

Beam College 2025

Kafka’s Role

● Reliably collects, stores, and distributes data streams.

● Scalable, fault-tolerant, and durable.

● Intermediary which connects producers to consumers.

● Most popular open-source stream-processing software.

Beam College 2025

Key Concepts

● Event – Piece of data with key, value, timestamp, metadata.

● Topic – Durably stores events, may have many producers and subscribers.

● Partition – Slice of a topic, allows for scalability, provides event ordering.

● Producer – Clients which publish events to Kafka.

● Consumer – Clients which subscribe, read, and process events from Kafka.

● Replication – Storing extra copies of data for fault tolerance.

Beam College 2025

Kafka Architecture

Beam College 2025

Kafka Client APIs

● Admin API – manage and inspect topics, brokers, and more.

● Producer API – publish a stream of events.

● Consumer API – subscribe, read and process events.

Apache Beam Kafka IO

Beam College 2025

Read From Kafka

1. KafkaIO.<Key, Value>read()

2. // Required settings

3. .withBootstrapServers("broker_1:9092,broker_2:9092")

4. .withTopic("my_topic")

5. .withKeyDeserializer(KeyDeserializer.class)

6. .withValueDeserializer(ValueDeserializer.class)

Beam College 2025

Optional Config

1. // Consumer Config

2. .withConsumerConfigUpdates(ImmutableMap.of("group.id", "my_beam_pipeline"))

3.

4. // Event Timestamps, processing time is one of a few options.

5. .withProcessingTime()

6.

7. // Restrict reader to committed messages on Kafka, for exactly-once semantics.

8. .withReadCommitted()

9.

10. // Commit offsets: preferred over 'auto.commit' in Kafka consumer config.

11. .commitOffsetsInFinalize()

12.

13. // Extract KV out of Kafka record.

14. .withoutMetadata() // PCollection<KV<Key, Value>>

Beam College 2025

Write To Kafka

1. KafkaIO.<Long, String>write()

2. // Required Config

3. .withBootstrapServers("my_broker:9092")

4. .withTopic("my_topic")

5. .withKeySerializer(LongSerializer.class)

6. .withValueSerializer(StringSerializer.class)

7.

8. // Optional Producer Config

9. .updateProducerProperties(ImmutableMap.of("compression.type", "gzip"))

Managed IO

Beam College 2025

Managed IO

Simplifies pipeline management for supported sources and sinks.

Consists of:

● A Beam transform that provides a common API for creating I/O connectors.

● A service that provides IO upgrades independent of the Beam version.

Beam College 2025

Advantages of Managed IO

● Dataflow automatically upgrades the managed I/O connectors in your pipeline.

● A single configuration API, resulting in simple and consistent pipeline code.

Beam College 2025

Managed IO

Beam College 2025

Managed IO for Kafka

It’s simple!

● Managed.read(Managed.KAFKA).withConfig(readConfigMap);

● Managed.write(Managed.KAFKA).withConfig(writeConfigMap);

Beam College 2025

Managed IO for Kafka

1. ImmutableMap<String, Object> config = ImmutableMap.<String, Object>builder()

2. .put("bootstrap_servers", options.getBootstrapServer())

3. .put("topic", options.getTopic())

4. .put("max_read_time_seconds", “1”)

5. .build();

6.

7. Managed.read(Managed.KAFKA).withConfig(readConfig);

Redistribute Transform

Beam College 2025

Partition-Limited Parallelism

● Problem: Limited Kafka partitions cause limited parallelism (keys)

● Solution: Add parallelism by rekeying inputs via

read.withRedistribute().withRedistributeNumKeys(N)

Beam College 2025

Pipeline Translation

Translates to:

● Add key: KV<Key, Record>

● Reshuffle (GroupByKey)

● Remove key, extract values: Record

Beam College 2025

At Least Once Optimization

● For at-least-once processing, rather than exactly-once.

● Specify: kafkaRead.withRedistribute().withAllowDuplicates()

● Why? Runner optimization is much cheaper than regular redistribute.

Pipeline
(Kafka To BigQuery)

Throughput
(elements/sec)

Hourly cost Throughput / Cost

Standard 70 K $1.29 54.3

Redistribute 270 K $5.89 45.8

Redistribute + Allow Duplicates 280 K $1.86 150.5

Offset Deduplication

Beam College 2025

Offset Deduplication

● Problem:

○ Redistribute is expensive due to exactly-once cost and latency.

○ Can’t use allow duplicates optimization because you need exactly-once.

● Solution:

○ Utilize source metadata, such as message offsets, to make shuffle cheaper.

○ Add withOffsetDeduplication() to your Kafka read step with Redistribute.

○ Not yet available, coming soon…

Active Load Balancing

Beam College 2025

Active Load Balancing

● Distributes load by moving work across workers to improve utilization

and performance.

● Without Load Balancing a single worker could become the bottleneck

for the entire pipeline.

●

Without Load Balancing With Load Balancing

Beam College 2025

Active Load Balancing

Beam College 2025

Active Load Balancing

Google Managed Kafka

Beam College 2025

Google Managed Kafka

● How do you setup authentication?

● There are a few configs to get right, example:
○ Map<String, Object> consumerConfigs = new HashMap<>();

○ consumerConfigs.put("sasl.mechanism", "PLAIN");

○ consumerConfigs.put("security.protocol", "SASL_SSL");

○ consumerConfigs.put("sasl.jaas.config", "org.apache.kafka….PlainLoginModule….");

○ read.updateConsumerProperties(consumerConfigs)

Beam College 2025

Google Managed Kafka

● Simplified!

○ read.withGCPApplicationDefaultCredentials();

● Authenticates with a Google Kafka Server using OAuth

Kafka Best Practices

Beam College 2025

Parallelism

● Limited by parallelism of the workers and keys (partitions for Kafka IO)

● Increasing partitions is an easy way to do this, but not always possible.

● Another approach is to redistribute the inputs into a larger keyspace with:

.withRedistribute().withRedistributeNumKeys(N).

● Specifying a number of keys is recommended.

Beam College 2025

Multiple Topics

● Single step: Create a single instance of the KafkaIO connector and

configure it to read multiple topics. Then filter by topic name to apply

different logic per topic.

● Multiple steps: To read from topics located in different clusters, your

pipeline can include several KafkaIO instances.

Beam College 2025

Committing

● By default, the KafkaIO connector doesn't use Kafka offsets to track

progress and doesn't commit back to Kafka.

● Setting enable.auto.commit=True commits offsets as soon as they are

read from Kafka without any processing by Dataflow, using this option isn't

recommended. The recommendation is to set

enable.auto.commit=False and commitOffsetsInFinalize=True.

Beam College 2025

Watermarks

● By default, KafkaIO uses the current processing time to assign the watermark.

● Beam also provides: withLogAppendTime and withCreateTime

● Alternatively, set custom behavior: withTimestampPolicyFactory.

Beam College 2025

Client Tuning

● unboundedReaderMaxReadTimeMs. Defaults to 10K. Lower values
can be used for low latency processing.

● max.poll.records. Defaults to 500. A higher value might perform
better by retrieving more incoming records together.

● fetch.max.bytes. Defaults to 1MB. A higher value might improve
throughput by reducing the number of requests.

● max.partition.fetch.bytes. Defaults to 1MB. This parameter
sets maximum amount of data per partition that the server returns.
Increasing the value can improve throughput by reducing the number of
requests.

Beam College 2025

Reference

cloud.google.com/dataflow/docs/guides/read-from-kafka

https://cloud.google.com/dataflow/docs/guides/read-from-kafka

Beam College 2025

Bonus Tip

● Use a Kafka schema registry for efficient schema encoding

● Full schema info per record → schema ID with lookup/caching

● A Dataflow customer shared they achieved 40x performance

● Reference: Youtube: How Shopify and Palo Alto Networks use Dataflow...

https://www.youtube.com/watch?v=FA8_aIzk5Ts&t=774s

Thank you!

Questions? Feel free to reach out!

linkedin.com/in/tomstepp

http://linkedin.com/in/tomstepp

Beam College 2025

References

● beam.apache.org

● beam.apache.org/…/KafkaIO.html

● github.com/apache/beam

● kafka.apache.org

http://beam.apache.org
https://beam.apache.org/releases/javadoc/current/org/apache/beam/sdk/io/kafka/KafkaIO.html
http://github.com/apache/beam
https://kafka.apache.org

