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Streaming Systems

Streaming systems are built for many reasons:

● Payment and financial transactions

● Logistics and automotive fleet tracking

● Sensor data from IoT systems

● Collect and react to customers in retail, travel, mobile apps

● Log extraction and fraud detection

● Gaming analytics
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Kafka’s Role

● Reliably collects, stores, and distributes data streams.

● Scalable, fault-tolerant, and durable.

● Intermediary which connects producers to consumers.

● Most popular open-source stream-processing software.



Beam College 2025

Key Concepts

● Event – Piece of data with key, value, timestamp, metadata.

● Topic – Durably stores events, may have many producers and subscribers.

● Partition – Slice of a topic, allows for scalability, provides event ordering.

● Producer – Clients which publish events to Kafka.

● Consumer – Clients which subscribe, read, and process events from Kafka.

● Replication – Storing extra copies of data for fault tolerance.
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Kafka Architecture
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Kafka Client APIs

● Admin API – manage and inspect topics, brokers, and more.

● Producer API – publish a stream of events.

● Consumer API – subscribe, read and process events.



Apache Beam Kafka IO
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Read From Kafka

1. KafkaIO.<Key, Value>read()

2.       // Required settings

3.       .withBootstrapServers("broker_1:9092,broker_2:9092")

4.       .withTopic("my_topic")

5.       .withKeyDeserializer(KeyDeserializer.class)

6.       .withValueDeserializer(ValueDeserializer.class)
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Optional Config

1.        // Consumer Config

2.       .withConsumerConfigUpdates(ImmutableMap.of("group.id", "my_beam_pipeline"))

3.

4.       // Event Timestamps, processing time is one of a few options.

5.       .withProcessingTime()

6.

7.       // Restrict reader to committed messages on Kafka, for exactly-once semantics.

8.       .withReadCommitted()

9.

10.       // Commit offsets: preferred over 'auto.commit' in Kafka consumer config.

11.       .commitOffsetsInFinalize()

12.

13.       // Extract KV out of Kafka record.

14.       .withoutMetadata() // PCollection<KV<Key, Value>>



Beam College 2025

Write To Kafka

1. KafkaIO.<Long, String>write()

2.        // Required Config

3.        .withBootstrapServers("my_broker:9092")

4.        .withTopic("my_topic")

5.        .withKeySerializer(LongSerializer.class)

6.        .withValueSerializer(StringSerializer.class)

7.

8.        // Optional Producer Config

9.        .updateProducerProperties(ImmutableMap.of("compression.type", "gzip"))
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Managed IO

Simplifies pipeline management for supported sources and sinks. 

Consists of:

● A Beam transform that provides a common API for creating I/O connectors.

● A service that provides IO upgrades independent of the Beam version.
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Advantages of Managed IO

● Dataflow automatically upgrades the managed I/O connectors in your pipeline. 

● A single configuration API, resulting in simple and consistent pipeline code. 
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Managed IO
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Managed IO for Kafka

It’s simple!

● Managed.read(Managed.KAFKA).withConfig(readConfigMap);

● Managed.write(Managed.KAFKA).withConfig(writeConfigMap);
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Managed IO for Kafka

1. ImmutableMap<String, Object> config = ImmutableMap.<String, Object>builder()

2.         .put("bootstrap_servers", options.getBootstrapServer())

3.         .put("topic", options.getTopic())

4.         .put("max_read_time_seconds", “1”)

5.         .build();

6.

7. Managed.read(Managed.KAFKA).withConfig(readConfig);



Redistribute Transform
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Partition-Limited Parallelism

● Problem: Limited Kafka partitions cause limited parallelism (keys)

● Solution: Add parallelism by rekeying inputs via       

read.withRedistribute().withRedistributeNumKeys(N)
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Pipeline Translation

Translates to:

● Add key: KV<Key, Record>

● Reshuffle (GroupByKey)

● Remove key, extract values: Record
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At Least Once Optimization

● For at-least-once processing, rather than exactly-once.

● Specify: kafkaRead.withRedistribute().withAllowDuplicates()

● Why? Runner optimization is much cheaper than regular redistribute.

Pipeline
(Kafka To BigQuery)

Throughput
(elements/sec)

Hourly cost Throughput / Cost

Standard 70 K $1.29 54.3

Redistribute 270 K $5.89 45.8

Redistribute + Allow Duplicates 280 K $1.86 150.5



Offset Deduplication



Beam College 2025

Offset Deduplication

● Problem: 

○ Redistribute is expensive due to exactly-once cost and latency.

○ Can’t use allow duplicates optimization because you need exactly-once.

● Solution: 

○ Utilize source metadata, such as message offsets, to make shuffle cheaper. 

○ Add withOffsetDeduplication() to your Kafka read step with Redistribute.

○ Not yet available, coming soon…
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Active Load Balancing

● Distributes load by moving work across workers to improve utilization 

and performance. 

● Without Load Balancing a single worker could become the bottleneck 

for the entire pipeline.

●

Without Load Balancing With Load Balancing
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Active Load Balancing



Beam College 2025

Active Load Balancing



Google Managed Kafka
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Google Managed Kafka

● How do you setup authentication? 

● There are a few configs to get right, example:
○ Map<String, Object> consumerConfigs = new HashMap<>();

○ consumerConfigs.put("sasl.mechanism", "PLAIN");

○ consumerConfigs.put("security.protocol", "SASL_SSL");

○ consumerConfigs.put("sasl.jaas.config", "org.apache.kafka….PlainLoginModule….");

○ read.updateConsumerProperties(consumerConfigs)



Beam College 2025

Google Managed Kafka

● Simplified!

○ read.withGCPApplicationDefaultCredentials();

● Authenticates with a Google Kafka Server using OAuth



Kafka Best Practices
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Parallelism

● Limited by parallelism of the workers and keys (partitions for Kafka IO)

● Increasing partitions is an easy way to do this, but not always possible.

● Another approach is to redistribute the inputs into a larger keyspace with: 

.withRedistribute().withRedistributeNumKeys(N).

● Specifying a number of keys is recommended.
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Multiple Topics

● Single step: Create a single instance of the KafkaIO connector and 

configure it to read multiple topics. Then filter by topic name to apply 

different logic per topic. 

● Multiple steps: To read from topics located in different clusters, your 

pipeline can include several KafkaIO instances. 
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Committing

● By default, the KafkaIO connector doesn't use Kafka offsets to track 

progress and doesn't commit back to Kafka. 

● Setting enable.auto.commit=True commits offsets as soon as they are 

read from Kafka without any processing by Dataflow, using this option isn't 

recommended. The recommendation is to set 

enable.auto.commit=False and commitOffsetsInFinalize=True.
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Watermarks

● By default, KafkaIO uses the current processing time to assign the watermark. 

● Beam also provides: withLogAppendTime and withCreateTime

● Alternatively, set custom behavior: withTimestampPolicyFactory. 
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Client Tuning

● unboundedReaderMaxReadTimeMs. Defaults to 10K. Lower values 
can be used for low latency processing.

● max.poll.records. Defaults to 500. A higher value might perform 
better by retrieving more incoming records together.

● fetch.max.bytes. Defaults to 1MB. A higher value might improve 
throughput by reducing the number of requests.

● max.partition.fetch.bytes. Defaults to 1MB. This parameter 
sets maximum amount of data per partition that the server returns. 
Increasing the value can improve throughput by reducing the number of 
requests.
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Reference

cloud.google.com/dataflow/docs/guides/read-from-kafka 

https://cloud.google.com/dataflow/docs/guides/read-from-kafka
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Bonus Tip

● Use a Kafka schema registry for efficient schema encoding

● Full schema info per record → schema ID with lookup/caching

● A Dataflow customer shared they achieved 40x performance

● Reference: Youtube: How Shopify and Palo Alto Networks use Dataflow... 

https://www.youtube.com/watch?v=FA8_aIzk5Ts&t=774s


Thank you!

Questions? Feel free to reach out!

linkedin.com/in/tomstepp 

http://linkedin.com/in/tomstepp
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References

● beam.apache.org 

● beam.apache.org/…/KafkaIO.html 

● github.com/apache/beam 

● kafka.apache.org 

http://beam.apache.org
https://beam.apache.org/releases/javadoc/current/org/apache/beam/sdk/io/kafka/KafkaIO.html
http://github.com/apache/beam
https://kafka.apache.org

